Non Stationary Noise Removal from Speech Signals using Variable Step Size Strategy
نویسندگان
چکیده
The aim of this paper is to implement various adaptive noise cancellers (ANC) for speech enhancement based on gradient descent approach, namely the least-mean square (LMS) algorithm and then enhanced to variable step size strategy. In practical application of the LMS algorithm, a key parameter is the step size. As is well known, if the step size is large, the convergence rate of the LMS algorithm will be rapid, but the steady-state mean square error (MSE) will increase. On the other hand, if the step size is small, the steady state MSE will be small, but the convergence rate will be slow. Thus, the step size provides a trade-off between the convergence rate and the steady-state MSE of the LMS algorithm. An intuitive way to improve the performance of the LMS algorithm is to make the step size variable rather than fixed, that is, choose large step size values during the initial convergence of the LMS algorithm, and use small step size values when the system is close to its steady state, which results in Variable Step Size LMS (VSSLMS) algorithms. By utilizing such an approach, both a fast convergence rate and a small steady-state MSE can be obtained. By using this approach various forms of VSSLMS algorithms are implemented. These are robust variable step-size LMS (RVSSLMS) algorithm providing fast convergence at early stages of adaptation and modified robust variable step-size LMS (MRVSSLMS) algorithm. The performance of these algorithms is compared with conventional LMS and Kowngs VSSLMS algorithm. Finally we applied these algorithms on speech enhancement application. Simulation results confirms that the implemented RVSSLMS and MRVSSLMS are superior than conventional algorithms in terms of convergence rate and signal to noise ratio improvement (SNRI). Keywords— Adaptive filtering, LMS algorithm, Noise Cancellation, Speech Processing, Variable Step Size.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملApplication of Blind Source Separation in Speech Processing for Combined Interference Removal and Robust Speaker Detection Using a Two-microphone Setup
A speech enhancement scheme is presented integrating spatial and temporal signal processing methods for blind denoising in non stationary noise environments. In a first stage, spatially localized interferring point sources are separated from noisy speech signals recorded by two microphones using a Blind Source Separation (BSS) algorithm assuming no a priori knowledge about the sources involved....
متن کاملClose speaker cancellation for suppression of non-stationary background noise for hands-free speech interface
This paper presents a noise cancellation method based on the ability to efficiently cancel a close target speaker contribution from the signals observed at a microphone array. The proposed method exploits this specificity in the case of the hands-free speech interface when the target user is close to the microphone array and the noise is a diffuse background noise. This method is in particular ...
متن کاملAdaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning
Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...
متن کامل